Bias found in AI models diagnosing skin diseases across demographics

Dermatology



Dermatology

An international research team led by Assistant Professor Zhiyu Wan from ShanghaiTech University has recently published groundbreaking findings in the journal Health Data Science, highlighting biases in multimodal large language models (LLMs) such as ChatGPT-4 and LLaVA in diagnosing skin diseases from medical images. The study systematically evaluated these AI models across different sex and age groups.

Utilizing approximately 10,000 dermatoscopic images, the study focused on three common skin diseases: melanoma, melanocytic nevi, and benign keratosis-like lesions. Results revealed that while ChatGPT-4 and LLaVA outperformed most traditional deep learning models overall, ChatGPT-4 showed greater fairness across demographic groups,…



Source link

Disclaimer


We strive to uphold the highest ethical standards in all of our reporting and coverage. We 5guruayurveda.com want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Website Upgradation is going on. For any glitch kindly connect at 5guruayurveda.com

Leave a Reply

Your email address will not be published. Required fields are marked *